Regular article

Theoretical study on structures and stability of HC₂P isomers

Yi-hong Ding, Ze-sheng Li, Yu-guo Tao, Xu-ri Huang, Chia-chung Sun

State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China

Received: 5 November 2000 / Accepted: 25 November 2001 / Published online: 8 April 2002 © Springer-Verlag 2002

Abstract. The structures and isomerization pathways of various HC₂P isomers in both singlet and triplet states are investigated at the B3LYP/6-311G(d,p), QCISD/ 6-311G(d,p) (for isomers only) and single-point CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) levels. At the CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) level, the lowest-lying isomer is a linear HCCP structure ³1 in the ${}^{3}\Sigma^{-}$ state. The second low-lying isomer has a CPC ring with exocyclic CH bonding ${}^{1}5$ in a singlet state at 10.5 kcal/mol. The following third and fourth low-lying isomers are a singlet bent HCCP structure ¹1 at 20.9 kcal/ mol and a bent singlet HPCC structure ¹3 at 35.8 kcal/ mol, respectively. Investigation of the HC₂P potentialenergy surface indicates that in addition to the experi-mentally known isomer ³1, the other isomers ¹1, ¹3 and ¹5 also have considerable kinetic stability and may thus be observable. However, the singlet and triplet bent isomers HCPC $^{1}2$ and $^{3}2$ as well as the triplet bent isomer HPCC $^{3}3$ are not only high-lying but are also kinetically unstable, in sharp contrast to the situation of the analogous HCNC and HNCC species that are both kinetically stable and that have been observed experimentally. Furthermore, the reactivity of various HC₂P isomers towards oxygen atoms is briefly discussed. The results presented here may be useful for future identification of the completely unknown yet kinetically stable HC₂P isomers 1 , 1 3 and 1 5 either in the laboratory or in interstellar space.

Key words: Theoretical study – Structure – Stability – Potential-energy surface – HC_2P

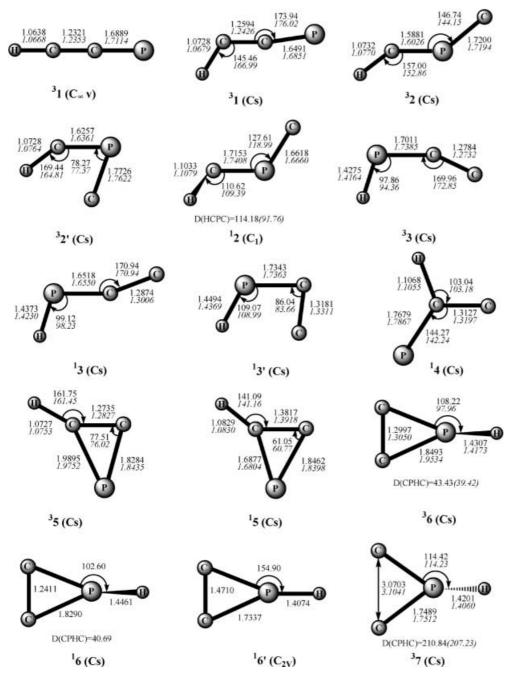
1 Introduction

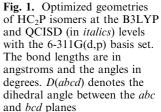
Ever since the detection of PH_3 [1], NP [2] and CP [3] in interstellar space, considerable attention has been drawn to the possible existence of other phosphorus-containing species in space. Experimental [4] and theoretical [5] investigations have been carried out to probe their possible production mechanism in space. An important result is that phosphorus-carbon molecules, such as C₂P and HC_2P , might also exist in the molecular hot core of star-forming regions provided that oxygen atoms are not injected [6]. Stimulated by this prediction, in 1997, Ahmad et al. [7] detected the HCCP radical for the first time by microwave spectroscopy. Soon after, in 1998, Shao and Fang [8] carried out a theoretical study on the structural features of HCCP at various levels. Both studies showed that HCCP has a linear structure in a $^{3}\Sigma^{-1}$ ground electronic state bearing both phosphoallene and phosphorene forms. To our knowledge, no theoretical calculations have been performed on the structures of other isomers of the HCCP radical or on their stability.

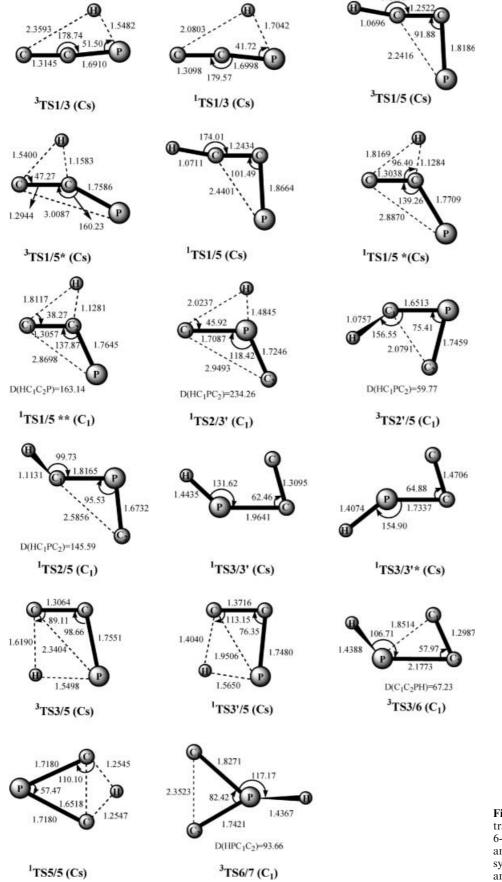
Chemically, HC_2P is analogous to the well-known HC_2N radical [9–13], the lowest-lying isomer, HCCN, of which has been detected in interstellar space [15] and has been the subject of numerous studies both experimentally [9–12] and theoretically [13, 14]. Nearly all the theoretical calculations showed that the triplet HCCN is a bent carbene form. Recently, the triplet bent isomers HCNC [12] and HNCC [10, 12] have also been characterized experimentally. However, the singlet CNC ring isomer with exocyclic CH bonding, which has been predicted to be the second low-lying isomer [12, 14], is still unknown even in the laboratory.

Clearly, distinct discrepancies exist between the structural features of the analogous chainlike HCCP and HCCN species [8]. Then, it is reasonable for us to wonder whether such discrepancies may also exist for other HC₂P isomers and whether their kinetic stability is high enough to allow detection. Actually, the differences between the simple molecules HCP and HCN have been well revealed, i.e., the isomer HPC is not a minimum point, whereas HNC is a kinetically stable isomer and has been detected in space. Without performing a detailed investigation on the whole potential-energy surface (PES), it still seems unlikely to be able to understand in detail the similarities and discrepancies between HC₂P and HC₂N. Therefore, a thorough the-

Correspondence to: Y. Ding


oretical calculation on all possible isomers of HC_2P in both the singlet and the triplet state is desirable. Such work is reported here. As will be shown, some significant discrepancies between the HC_2N and HC_2P PESs are found. Furthermore, the reactivity of HC_2P isomers towards oxygen atoms is briefly discussed.


2 Computational methods


All the calculations were carried out using the Gaussian 98 program package. The geometries of the HC_2P isomers and the interconversion transition states were fully optimized at the B3LYP/6-311G(d,p) level. Harmonic vibrational frequencies were calculated at the same level to check whether the structure obtained is a stationary point or a saddle point. To get more accurate energies, CCSD(T)/ 6-311G(d,p) calculations were performed at the B3LYP/6-311G(d,p) geometries. Intrinsic reaction coordinate calculations were also carried out to test whether the transition state connects the right isomers at the B3LYP/6-311G(d,p) level. For stationary isomers, further calculations were performed at the QCISD/6-311G(d,p) level to determine their structures and spectroscopic properties.

3 Results and discussions

For the tetraatomic molecule HC_2P , nearly all the possible isomeric forms were searched. Yet, only six triplet isomers (³1, ³2, ³3, ³5, ³6 and ³7) and six singlet isomers (¹1, ¹2, ¹3, ³3', ¹4 and ¹5) are local minimum structures. A total of 17 interconversion transition states (seven in the triplet state and ten in the singlet state) were

173

Fig. 2. Optimized geometries of HC_2P transition states at the B3LYP/ 6-311G(d,p) level. Bond lengths are in angstroms and angles in degrees. The symbol D(abcd) denotes the dihedral angle between the abc and bcd planes

obtained. The optimized structures of the isomers and the transition states are shown in Figs 1 and 2, respectively, while the respective vibrational frequencies of the isomers and the transition states are given in Tables 1 and 2. The energetics of all the species are listed in Table 3. Finally, a schematic PES of HC₂P in both the singlet and the triplet states is plotted in Fig. 3. Wherever possible, the similarities and discrepancies between HC₂P and HC₂N are discussed.

3.1 Triplet PES

We first consider the seven triplet isomers. The lowestlying isomer ³1 has a linear HCCP structure in the ${}^{3}\Sigma^{-}$ state. The QCISD/6-311G(d,p) bond values are r(CC) = 1.235 Å, r(CP) = 1.711 Å and r(CH) =1.067 Å. Compared with the experimentally determined structure, $r_0(CC) = 1.241$ Å, $r_0(CP) = 1.685$ Å and $r_0(CH) = 1.057$ Å [7], the agreement appears to be good.

Table 1. Harmonic vibration frequencies (cm⁻¹), IR intensities (km/mol) (in *parentheses*) and dipole moment of HC₂P isomers at the B3LYP/6-311G(d,p) and QCISD/6-311G(d,p) (in *italics*) levels

Species	Frequencies (infrared intensity)	Dipole moment (D)
³ 1 HCCP	306 (7) 306 (7) 569 (41) 569 (41) 709 (13) 1,842 (9) 3,451 (76) 258 (4) 258 (4) 556 (40) 556 (41) 685 (25) 1,866 (17) 3,470 (58)	1.2929 1.0032
³ 2 HCPC	129 (4) 402 (46) 432 (44) 758 (28) 1,069 (28) 3,335 (42) 148 (4) 380 (39) 428 (28) 772 (26) 1,025 (32) 3,346 (33)	3.0111 <i>3.1210</i>
³ 2' HCPC	269 (74) 279 (21) 485 (26) 614 (35) 1,030 (3) 3,337 (32) 175 (71) 234 (49) 433 (27) 618 (34) 1,024 (3) 3,350 (27)	2.1021 2.0773
³ 3 HPCC	269 (31) 307 (0) 674 (5) 771 (15) 1,476 (563) 2,334 (20) 252 (21) 270 (0) 671 (23) 856 (35) 1,647 (333) 2,445 (51)	2.2861 1.7944
³ 5 cCC(H)P	366 (1) 642 (41) 651 (57) 807 (40) 1,714 (11) 3,335 (40) 342 (1) 622 (50) 653 (61) 832 (43) 1,706 (11) 3,363 (36)	1.8165 <i>1.8091</i>
³ 6 cCP(H)C	258 (28) 388 (162) 611 (2) 769 (49) 1,585 (52) 2,286 (76) 445 (1) 470 (8) 766 (3) 873 (0) 1,597 (124) 2,421 (94)	2.1340 1.2285
³ 7 CP(H)C	119 (13) 342 (27) 720 (1) 769 (10) 791 (145) 2,349 (24) 108 (8) 321 (30) 740 (32) 783 (13) 820 (210) 2,470 (20)	2.4629 2.2578
¹ 1 HCCP	241 (6) 263 (290) 403 (6) 808 (20) 1,764 (5) 3,339 (25) 231 (43) 252 (76) 372 (30) 740 (18) 1,857 (11) 3,457 (63)	1.0900 1.1542
¹ 2 HCPC	118 (10) 301 (70) 662 (7) 855 (54) 1,025 (108) 3,019 (7) 151 (9) 355 (77) 691 (2) 841 (58) 1,026 (54) 3,026 (16)	2.4839 2.2486
¹ 3 HPCC	155 (3) 228 (1) 799 (4) 939 (37) 1,886 (373) 2,291 (89) 132 (3) 223 (1) 797 (0) 956 (36) 1,855 (342) 2,395 (88)	3.9635 <i>3.7650</i>
¹ 3' HPCC	261 (2) 401 (22) 827 (3) 883 (47) 1,589 (80) 2,210 (92) 337 (1) 422 (21) 820 (0) 897 (44) 1,567 (86) 2,295 (86)	2.6452 2.6935
¹ 4 CC(H)P	284 (13) 560 (49) 651 (3) 702 (28) 1,577 (44) 2,988 (67) 250 (13) 527 (40) 648 (3) 705 (16) 1,602 (64) 3,052 (44)	2.3523 2.2752
¹ 5 cCC(H)P	654 (0) 813 (22) 884 (6) 1,031 (23) 1,347 (10) 3,192 (1) 675 (1) 814 (25) 910 (5) 1,066 (22) 1,345 (14) 3,252 (1)	2.7363
¹ 6 cCP(H)C ¹ 6' cCP(H)C	371 <i>i</i> (135) 220 <i>i</i> (41) 771 (145) 975 (30) 1,943 (1) 2,228 (175) 855 <i>i</i> (88) 360 (1) 675 (6) 917 (9) 1,090 (16) 2,437 (9)	_

Table 2. Harmonic vibration frequencies (cm⁻¹) and IR intensities (km/mol) (in *parentheses*) of interconversion transition states between HC₂P isomers at the B3LYP/ 6-311G(d,p) level

Species	Frequencies (infrared intensity)
³ 1/3	994 <i>i</i> (8) 264 (1) 296 (12) 742 (0) 1,618 (37) 1,974 (1)
³ 1/5	324i (15) 611 (60) 698 (68) 804 (25) 1,774 (7) 3,392 (68)
³ 1/5*	166 <i>i</i> (31) 346 (7) 586 (3) 662 (19) 1,690 (86) 2,617 (41)
³ 2'/5	265i (44) 343 (19) 540 (34) 676 (32) 988 (8) 3,296 (19)
³ 3/5	1,000i (39) 395 (0) 544 (8) 806 (1) 1,554 (54) 1,724 (25)
³ 3/6	248i (34) 448 (10) 452 (71) 773 (7) 1,528 (189) 2,263 (59)
³ 6/7	452 <i>i</i> (34) 414 (53) 509 (4) 608 (20) 835 (32) 2,236 (40)
¹ 1/3	904 <i>i</i> (588) 183 (4) 339 (2) 734 (7) 1,639 (126) 2,223 (52)
¹ 1/5	579 <i>i</i> (112) 692 (161) 773 (38) 786 (22) 1,833 (18) 3,339 (53)
¹ 1/5*	550 <i>i</i> (29) 364 (6) 616 (24) 812 (33) 1,698 (316) 2,772 (49)
¹ 1/5**	539 <i>i</i> (30) 280 (11) 659 (31) 799 (23) 1,659 (171) 2,773 (27)
¹ 2/3′	1,313 <i>i</i> (209) 157 (3) 550 (24) 807 (27) 899 (29) 1,958 (63)
12/5	364 <i>i</i> (26) 291 (19) 643 (40) 932 (19) 1,029 (99) 2,911 (28)
¹ 3/3′	305i (5) 149 (1) 679 (32) 969 (9) 1,618 (33) 2,236 (89)
¹ 3/3'*	855 <i>i</i> (89) 360 (1) 676 (6) 918 (8) 1,091 (16) 2,437 (9)
¹ 3′/5	927i (95) 725 (3) 810 (17) 822 (1) 1,342 (3) 1,887 (20)
15/5	794 <i>i</i> (42) 556 (2) 872 (0) 898 (61) 1,011 (0) 2,384 (103)

Table 3. Total (a.u.) and relative (kcal/mol) (in *parentheses*) energies of the HC₂P isomers and the interconversion transition states at the B3LYP/6-311-G(d,p), QCISD/6-311G(d,p) (for isomers only) and singlepoint CCSD(T)/6-311G(d,p)// B3LYP/6-311G(d,p) levels

Species	B3LYP/6-311G(d,p)	CCSD(T)/6-311G(d,p)// B3LYP/6-311G(d,p)	QCISD/6-311G(d,p)
³ 1 HCCP	-418.0899723 (0.0)	-417.3590222 (0.0)	-417.3516165 (0.0)
³ 2 HCPC	-417.9291518 (100.9)	-417.1929670 (104.2)	-417.1907974 (100.9)
³ 2' HCPC	-417.9327713 (98.6)	-417.1992582 (100.3)	-417.1954259 (98.0)
³ 3 HPCC	-417.9924004 (61.2)	-417.2563185 (64.4)	-417.2571081 (59.3)
$^{3}5 \text{ cCC(H)P}$	-418.0343793 (34.9)	-417.3083919 (31.8)	-417.2943722 (35.9)
$^{3}6 \text{ cCP(H)C}$	-417.9622328 (80.2)	-417.2317168 (79.9)	-417.2252945 (79.3)
$^{3}7$ CP(H)C	-417.8425218 (155.3)	-417.1099752 (156.3)	-417.1042357 (155.2)
¹ 1 HCCP	-418.0525094 (23.5)	-417.3257920 (20.9)	-417.3063127 (28.4)
¹ 2 HCPC	-417.9039667 (116.7)	-417.1911687 (105.3)	-417.1706243 (113.6)
¹ 3 HPCC	-418.0207675 (43.4)	-417.3019186 (35.8)	-417.2816111 (43.9)
¹ 3' HPCC	-417.9934907 (60.5)	-417.2773461 (51.3)	-417.2548555 (60.7)
$^{1}4$ CC(H)P	-417.9532821 (85.8)	-417.2337104 (78.6)	-417.2162558 (84.9)
$^{1}5 \text{ cCC(H)P}$	-418.0587611 (19.6)	-417.3423029 (10.5)	-417.3219413 (18.6)
$^{1}6 \text{ cCP(H)C}$	-417.9755049 (71.8)		
$^{1}6'$ cCP(H)C	-417.9184229 (107.6)		
³ 1/3	-417.9701458 (75.2)	-417.2386307 (75.5)	
$^{3}1/5$	-418.0325043 (36.1)	-417.3071759 (32.5)	
³ 1/5*	-418.0054026 (53.1)	-417.2824222 (48.1)	
$^{3}2'/5$	-417.9324295 (98.9)	-417.2001050 (99.7)	
³ 3/5	-417.9454658 (90.7)	-417.2176726 (88.7)	
33/6	-417.9541232 (85.2)	-417.2245953 (84.4)	
³ 6/7	-417.8297445 (163.3)	-417.0956479 (165.3)	
¹ 1/3	-417.9532431 (85.8)	-417.2323577 (79.5)	
¹ 1/5	-417.9788909 (69.7)	-417.2607706 (61.7)	
¹ 1/5*	-417.9690353 (75.9)	-417.2465426 (70.6)	
¹ 1/5**	-417.9691704 (75.8)	-417.2460314 (70.9)	
¹ 2/3'	-417.7927672 (186.5)	-417.0894136 (169.2)	
$^{1}2/5$	-417.8964959 (121.4)	-417.1823517 (110.9)	
¹ 3/3'	-417.9865094 (64.9)	-417.2696209 (56.1)	
¹ 3/3'*	-417.9184227 (107.6)	-417.2058477 (96.1)	
¹ 3'/5	-417.9828507 (67.2)	-417.2698054 (56.0)	
¹ 5/5	-417.9755928 (71.8)	-417.2649970 (59.0)	

The results are also consistent with one recent calculation [8]. The bond length of the terminal CP is just a little longer than the typical C=P double bond, 1.673 Å, of CH_2PH [16]. Yet, both the spin density (-0.03, 0.81, -0.37, 1.60 for H, C, C, P) and the bond order (1.00, 2.61, 1.50 for HC, CC, CP bond) analyses indicate that the triplet HCCP may be best written as a resonance structure, $HC \equiv C - P \leftrightarrow H - C = C = P$, where the former has more weight. Then, the linear triplet HCCP has a phosphorene form slightly modified by a phosphoallene, as stated previously [8] Optimization of a possible bent structure with a phosphocarbene form often leads to the linear form ³1. Note that for HC_2N , the bent HCCN form is the ground-state structure and may be described as a bent carbene with some contribution of an allenelike character.

The second low-lying triplet isomer is ³5 at 31.8 kcal/ mol bearing a CPC three-membered ring with a H atom linked to the carbon. The chainlike *trans*-HPCC isomer ³3 and the CPC three-membered-ring isomer ³6 are 64.4 and 79.9 kcal/mol, respectively, above the ³1 isomer. The CPC chainlike isomers ³2 (trans-), ³2' (cis-) and ³7 lie much higher at 104.2, 100.3 and 156.3 kcal/mol, respectively.

The triplet PES (dashed line) in Fig. 3 clearly shows that ³1 is kinetically the most stable isomer. Its smallest isomerization barrier is 32.5 kcal/mol to isomer ³5. However, the rather small reverse barrier, 0.7 kcal/mol,

makes the ${}^{3}1 \rightarrow {}^{3}5$ conversion almost negligible. Isomer ${}^{3}3$ possesses much smaller kinetic stability since the smallest conversion energy is 11.1 kcal/mol (${}^{3}3 \rightarrow {}^{3}1$). Owing to its high energy and low kinetic stability, the observation of isomer ${}^{3}3$ seems less likely. The experimental observation of isomers ${}^{3}2'$, ${}^{3}6$ and ${}^{3}7$ is also very unlikely owing to the very small conversion barriers, i.e., -0.6 kcal/mol for ${}^{3}2' \rightarrow {}^{3}5$, 4.5 kcal/mol for ${}^{3}6 \rightarrow {}^{3}3$ and 9.0 kcal/mol for ${}^{3}7 \rightarrow {}^{3}6$. The transition states linking ${}^{3}2$ cannot be located. Yet we expect that the rotation barrier from ${}^{3}2$ to ${}^{3}2'$ may be just a few kilocalories per mole and thus ${}^{3}2$ may also have low kinetic stability.

On the triplet PES, similar structures of ³1, ³2 and ³5 are also minima for HC₂N. A minor difference for structure ³3 is that it is trans for HC₂P and cis for HC₂N. The *cis*-HCPC form ³2', the three-membered-ring ³6 and the branched chainlike ³7 were not located for HC₂N [12, 14]. Note that for structure **6**, the triplet form is stable for HC₂P, whereas the singlet is stable for HC₂N [12, 14]. The existence of ³7 may be ascribed to the ability of P to participate in five-coordination. Noticeably, while the HCPC isomers ³2, ³2' and ³3 at 104.2, 100.3 and 64.4 kcal/mol, respectively, are not only high-lying but are also kinetically unstable towards isomerization, the corresponding HCNC structures ³2 and ³3 lie just 23.7 and 33.9 kcal/mol above the ground state and are kinetically very stable. The instability of HCPC may be ascribed to

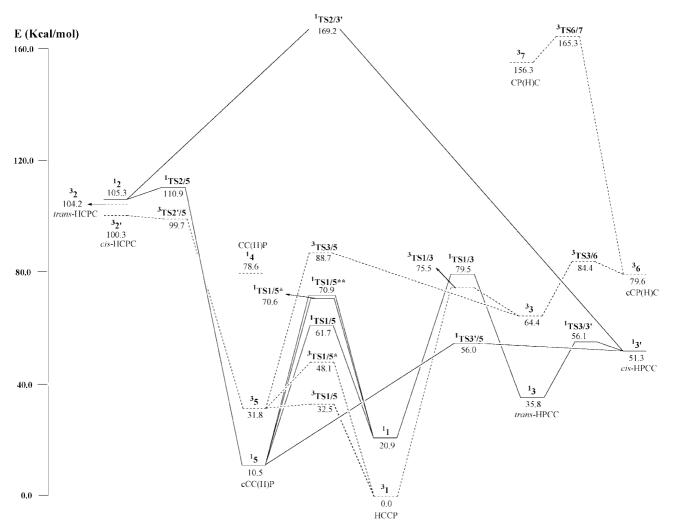


Fig. 3. Schematic potential-energy surface of HC_2P at the CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) level

the much lower preference of P to form multiple bonds than N.

3.2 Singlet PES

Let us turn to the six isomers on the singlet PES (solid line) in Fig. 3. The lowest-lying singlet isomer is the CPC three-membered-ring form ¹⁵ (at 10.5 kcal/mol) followed by the chainlike isomers HCCP ¹1 and *trans*-HPCC ¹³ at 20.9 and 35.8 kcal/mol, respectively. The *cis*-HPCC ¹³' is high-lying at 51.3 kcal/mol. The branched chainlike CCP isomer ¹⁴ with H bonded to the central C lies at 78.6 kcal/mol. Isomer HCPC ¹² is the highest singlet species, at 105.3 kcal/mol.

Considering the kinetic stability of the six singlet isomers, we can first see that ¹⁵ is the most stable since the smallest conversion barrier is 46.5 kcal/mol (${}^{15} \rightarrow {}^{13}'$). The high stability of ¹⁵ may be due to the existence of 4n + 2 aromaticity within the three-membered ring (n = 0). Isomer ¹¹ also possesses high kinetic stability owing to the large barrier of 40.8 kcal/mol for ¹¹ \rightarrow ¹⁵ conversion. The conversion barrier, 20.3 kcal/mol for " $3 \rightarrow {}^{13}'$, is much smaller than for ¹¹ and ¹⁵, yet it is still considerable. Moreover, the reverse barrier from ¹3' to ¹3 is just 4.8 kcal/mol, raising the kinetic stability of ¹3 higher. The isomers ¹3' and ¹2 may surely be considered as kinetically unstable owing to their very small conversion barriers, i.e., 5.6 kcal/mol for ¹2 \rightarrow ¹5 and 4.7 kcal/ mol for ¹1 \rightarrow ¹5. We were not able to locate any transition states associated with isomer ¹4 in spite of numerous attempts. Owing to the low thermodynamical stability (at 78.6 kcal/mol), we expect isomer ¹4 to be of less interest.

It should be pointed out that for the well-studied HC_2N , structures similar to the *cis*-HPCC ¹3' and the branched chainlike CC(H)P ¹4 do not exist. Moreover, the three-membered-ring isomers ¹6 and ¹6' are not minima at all for HC_2P , whereas the corresponding HC_2N form is a minimum structure. The corresponding structure ¹2 is very low lying (at 24.1 kcal/mol) and is kinetically very stable for HC_2N , whereas ¹2 is rather high lying for HC_2P (at 105.3 kcal/mol) and is kinetically very unstable.

An interesting point is that for the HXCC (X = N,P) structure, the triplet form is thermodynamically and kinetically more stable than the singlet for X = N, while it is just the opposite for X = P. The stability discrepancy can be reflected in the bond length variation from

Table 4. (Contd.)

$^{3}TSX_{10}/X_{12}$	-493.2814784 (63.5)	-492.3919477 (71.0)
$^{3}TSX_{12}/X_{14}$	-493.2904972 (57.9)	-492.4037502 (63.5)
$^{3}TSX_{12}/X_{14*}$	-493.2742609 (68.1)	-492.3906225 (71.8)
$^{3}TSX_{13}/X_{13}$	-493.2264655 (98.1)	-492.3478801 (98.6)
$^{3}TSX_{13}/X_{14}$	-493.2054576 (111.1)	-492.3225469 (114.5)
$R_1^{3}HCCP + ^{3}O$	-493.1753466 (130.1)	-492.2930193 (133.0)
R_2 ¹ HCCP + ³ O	-493.1378137 (153.7)	-492.2597891 (153.9)
R_3 ³ HCCP + ¹ O	-493.0732203 (194.2)	-492.2090401 (185.7)
R_4 ¹ HCCP + ¹ O	-493.0357175 (217.7)	-412.1758099 (206.6)
R_5 ¹ cCC(H)P + ³ O	-493.1441354 (149.7)	-492.2763000 (143.5)
R_6^{1} cCC(H)P + 1 O	-493.0420092 (213.8)	-492.1923208 (196.2)
R_7 ¹ HPCC + ³ O	-493.1061418 (173.6)	-492.2359157 (168.9)
R_8 ¹ HPCC + ¹ O	-493.0040158 (237.6)	-492.1519365 (221.6)
P_1 HCP + CO	-493.3792862 (2.2)	-492.5140872 (-5.7)
P_2 ³ HCP+CO	-493.2692852 (71.2)	-492.4017643 (64.8)
$P_3 PCCO + H$	-493.2691924 (71.2)	-492.3798877 (78.5)
$P_4 CCH + PO$	-493.2066830 (110.5)	-492.3262155 (112.2)
P_5 ³ CCO + ³ PH	-493.2046247 (111.8)	-492.3215600 (115.1)
$P_6 HCO + CP$	-493.2150395 (105.2)	-492.3156513 (118.8)
$P_7 H + CO + CP$	-493.1768383 (129.2)	-492.2927615 (133.2)
$P_8 CH + PCO$	-493.1739490 (131.0)	-492.2918293 (133.8)
P_9 HCP + 3 CO	-493.1620484 (138.5)	-492.2904769 (134.6)
P_{10} CCP + OH	-493.1664539 (135.7)	-492.2851225 (138.0)
P_{11} CCPO + H	-493.1556812 (142.5)	-492.2688031 (148.2)

singlet to triplet, i.e., r(XC) shortens and r(CC) elongates for X = N [12, 14], while r(XC) elongates and r(CC)shortens for X = P. The r(CC) value of HPCC is shorter than that of HNCC. At the B3LYP/6-311G(d,p) level, the bond orders are 1.81 (1.86) and 1.95 (1.87) for NC and CC bonds of singlet (triplet) HNCC, while they are 1.46 (1.36) and 2.20 (2.43) for PC and CC bonds of singlet (triplet) HPCC. This indicates that the carbenelike structure HN=C=C dominates for HNCC, whereas the acetylene-like H–P–C=C dominates for HPCC. The atomic spin densities are 0.67, 0.16 and 1.16 for N, C and C of triplet HNCC and 0.90, 0.13 and 0.92 for P, C and C of triplet HPCC, which also supports the earlier description.

It is worth mentioning that we also carried out a comparative QCISD/6-311G(d,p) study on the structures and vibrational frequencies of minimum HC₂P isomers. As shown in Fig. 1, for nearly all the species, the B3LYP/6-311G(d,p) geometries are very close to the QCISD/6-311G(d,p) values. The exceptions are for the bond angles of the singlet HCCP ¹1 and HCPC ¹2, i.e., the B3LYP HCC angle is 12° smaller than the QCISD angle in ¹1 and the B3LYP CPC angle and HCPC dihedral angle are about 9° and 22° larger than the QCISD values in ¹2. The relatively large differences indicate that the two singlet species may have some open-shell nature.

3.3 Experimental implications

It is clear from the preceding discussions that the ground state of HC_2P is the triplet linear HCCP ³1. The second low-lying isomer is a singlet three-membered-ring ¹5 at 10.5 kcal/mol. The other three forms within

Table 4. Total (a.u.) and relative (kcal/mol) (in *parentheses*) energies of the HC_2PO isomers, the transition states and fragments at the B3LYP/6-311G(d,p) and single-point CCSD(T)/6-311G(d,p) levels

Sussian	D2I VD/	
Species	B3LYP/ 6-311G(d,p)	CCSD(T)/ 6-311G(d,p)//
	0-5110(u,p)	B3LYP/6-311G(d,p)
		D3E11/0-3110(d,p)
$^{1}X_{1}$ HCCPO	-493.3660927 (10.4)	-492.4829655 (13.8)
$^{1}X_{2}$ CC(H)PO	-493.3043890 (49.2)	-492.4191627 (53.8)
$^{1}X_{3}$ CCP(H)O	-493.2826797 (62.8)	-492.3964830 (68.1)
¹ X ₄ HOPCC	-493.3040561 (49.4)	-492.4172419 (55.1)
$^{1}X_{4'}$ HOPCC	-493.3096054 (45.9)	-492.4232863 (51.3)
¹ X ₅ HOCCP	-493.3173979 (41.0)	-492.4316120 (46.1)
¹ X _{5'} HOCCP	-493.3134487 (43.5)	-492.4268100 (49.1)
$^{1}X_{6}$ OC(H)CP	-493.3827236 (0.0)	-492.5050202 (0.0)
¹ X ₇ HPCCO	-493.3736111 (5.7)	-492.4845068 (12.9)
${}^{1}X_{8} O-cCC(H)P$	-493.3738688 (5.6)	-492.4881794 (10.6)
$^{1}X_{9}$ HP-cCCO	-493.2706913 (70.3)	-492.3924502 (70.6)
$^{1}X_{9'}$ HP-cCCO	-493.2703123 (70.5)	-492.3917897 (71.1)
$^{1}X_{10} \text{ cCC(H)PO}$	-493.2861719 (60.6)	-492.4061791 (62.0)
${}^{1}X_{11} \text{ cCC(H)OP}$	-493.2219669 (100.9)	-492.3350866 (106.6)
${}^{3}X_{1}$ HCCPO ${}^{3}X_{2}$ CC(H)PO	-493.2998238 (52.0) -493.2304312 (95.6)	-492.4052433 (62.6) -492.3370965 (105.4)
$^{3}X_{3}$ CCP(H)O	-493.2260509 (98.3)	-492.3370903(103.4) -492.3394041(103.9)
$^{3}X_{4}$ HOPCC	-493.2491470 (83.8)	-492.3642728 (88.3)
${}^{3}X_{4'}$ HOPCC	-493.2521263 (82.0)	-492.3673948 (86.4)
³ X ₅ HOCCP	-493.3259007 (35.7)	-492.4358430 (43.4)
${}^{3}X_{6}$ OC(H)CP	-493.2986205 (52.8)	-492.4051771 (62.7)
$^{3}X_{7}$ HPCCO	-493.3413313 (26.0)	-492.4425668 (39.2)
³ X ₉ HP-cCCO	-493.2210533 (101.4)	-492.3351596 (106.6)
${}^{3}X_{10}$ cCC(H)PO	-493.2933913 (56.1)	-492.4057912 (62.3)
$^{3}X_{11}$ cCC(H)OP	-493.2729821 (68.9)	-492.3865393 (74.3)
$^{3}X_{12}$ OCC(H)P	-493.3695521 (8.3)	-492.4810841 (15.0)
$^{3}X_{13}$ OC(H)PC	-493.2336116 (93.6)	-492.3540973 (94.7)
${}^{3}X_{13'}$ OC(H)PC	-493.2275433 (97.4)	-492.3483094 (98.3)
${}^{3}X_{14}$ OCPCH	-493.2971617 (53.7)	-492.4107953 (59.1)
$^{1}TSX_{1}/X_{2}$	-493.2928771 (56.4)	-492.4101260 (59.5)
$^{1}TSX_{1}/X_{3}$	-493.2053278 (111.3)	-492.3187015 (116.9)
$^{1}TSX_{1}/X_{4'}$	-493.2496346 (83.5)	-492.3645842 (88.1)
$^{1}TSX_{2}/X_{10}$ $^{1}TSX_{3}/X_{4}$	-493.2735610 (68.5) -493.1990030 (115.3)	-492.3910440 (71.5) -492.3097268 (122.5)
$^{1}\text{TSX}_{4}/\text{X}_{4'}$	-493.2913727 (57.3)	-492.4044951 (63.1)
$^{1}TSX_{5}/X_{5'}$	-493.2811859 (63.7)	-492.3909768 (71.6)
$^{1}TSX_{5}/X_{6}$	-493.2577140 (78.4)	-492.3729324 (82.9)
$^{1}TSX_{5'}/P_{1}$	-493.2235302 (99.9)	-492.3461407 (99.7)
$^{1}TSX_{5'}/P_{1}^{*}$	-493.2211218 (101.4)	-492.3463816 (99.5)
$^{1}TSX_{6}/X_{8}$	-493.3078123 (47.0)	-492.4127530 (57.9)
$^{1}TSX_{6}/P_{1}$	-493.2493949 (83.7)	-492.3709771 (84.1)
$^{1}TSX_{7}/X_{8}$	-493.3006708 (51.5)	-492.4080643 (60.8)
$^{1}TSX_{7}/X_{8}*$	-493.2630311 (75.1)	-492.3796698 (78.7)
$^{1}TSX_{7}/X_{9}$	-493.2170303 (104.0)	-492.3363792 (105.8)
$^{1}TSX_{7}/P_{1}$	-493.2720523 (69.4)	-492.4017193 (64.8)
$^{1}TSX_{8}/X_{10}$	-493.2641463 (74.3)	-492.3803353 (78.2)
$^{1}TSX_{8}/P_{1}$	-493.3116002 (44.6)	-492.4295065 (47.4)
$^{1}TSX_{9}/P_{1}$	-493.2509218 (82.7)	-492.3757096 (81.1)
$^{1}TSX_{9'}/P_{1}$	-493.2433847 (87.4)	-492.3677850 (86.1)
$^{3}TSX_{1}/X_{2}$	-493.2213392 (101.3)	-492.3297406 (110.0)
$^{3}TSX_{1}/X_{3}$	-493.1886030 (121.8)	-492.2910397 (134.3)
${}^{3}TSX_{1}/X_{4'}$ ${}^{3}TSX_{2}/X_{10}$	-493.1807574 (126.7) -493.2301484 (95.7)	-492.2878309 (136.3) -492.3374364 (105.2)
$^{1}SX_{2}/X_{10}$ $^{3}TSX_{3}/X_{4}$	-493.1672720(135.2)	-492.2771164 (143.0)
$^{1}SX_{3}/X_{4}$ $^{3}TSX_{4}/X_{4'}$	-493.2466951 (85.4)	-492.3613982 (90.1)
$^{3}TSX_{4}/P_{11}$	-493.1511314 (145.3)	-492.2578094 (155.1)
$^{3}TSX_{5}/X_{6}$	-493.2514994 (82.3)	-492.3540414 (94.7)
$^{3}TSX_{5}/P_{3}$	-493.2599597 (77.0)	-492.3687639 (85.5)
${}^{3}TSX_{6}/X_{12}$	-493.2891105 (58.7)	-492.3894236 (72.5)
$3TSX_7/X_9$	-493.2145265 (105.5)	-492.3263207 (112.1)
$^{3}TSX_{7}/X_{12}$	-493.3113316 (44.8)	-492.4025650 (64.3)

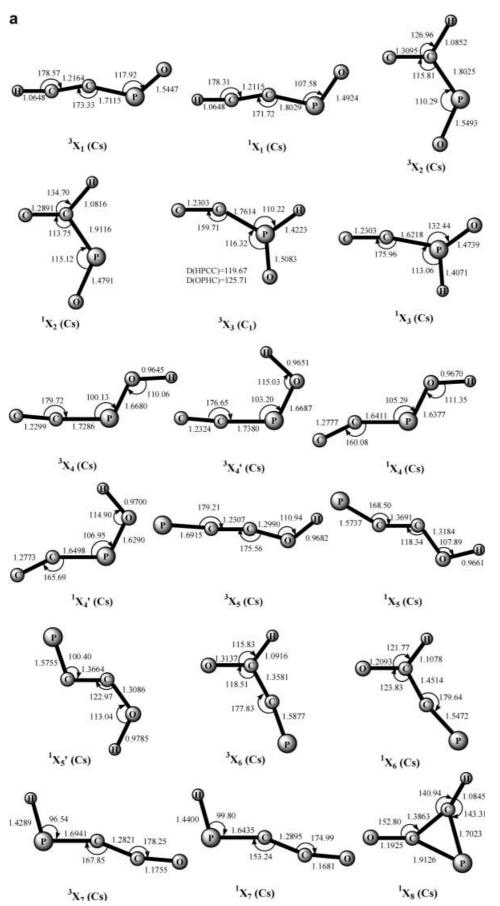


Fig. 4. Optimized geometries of HC_2PO isomers at the B3LYP/ 6-311G(d,p) level. Bond lengths are in angstroms and angles in degrees. The symbol D(abcd) denotes the dihedral angle between the abc and bcd planes

261

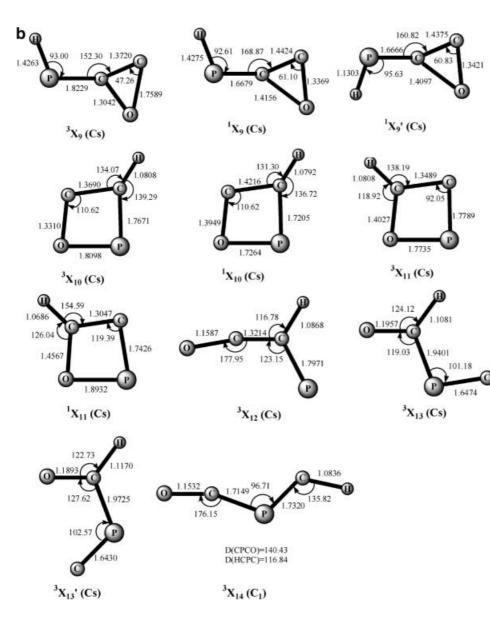
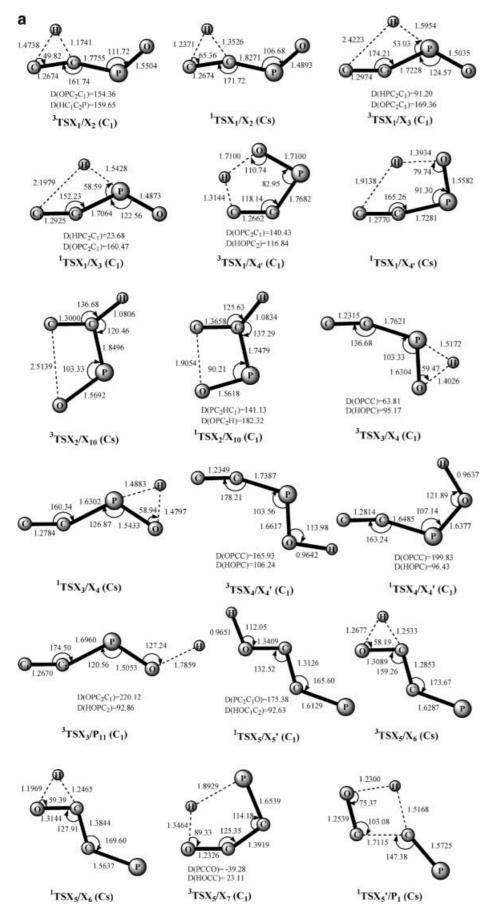



Fig. 4. (Contd.)

36 kcal/mol are 1 1, 3 5 and 1 3 at 20.9, 31.8 and 35.8 kcal/ mol, respectively. Kinetically, only isomers ³1, ¹1, ¹5 and ¹3 may be stable and are expected to be experimentally observable. Actually, the ground-state structure ³1 has already been detected via a microwave technique [7]. Our calculations point to future interest of the singlet bent form ¹1. Photoexcitation of cCC(H)P5 and HPCC 3 from singlet to triplet, however, may destabilize the structure since the corresponding triplet forms are very unstable. It has been proposed [6] that HC₂P as well as other CP-bearing molecules might be present in interstellar space if oxygen atoms are not present. On the basis of the predicted high kinetic stability, we expect the three unknown species 1, 15 and ¹3 to be observable under laboratory and even interstellar circumstances where oxygen atoms are very scarce. The calculated frequencies and dipole moments presented in Table 1 may be useful for future identification of ¹1, ¹5 and ¹3 as well as the experimentally known ³1.

It is of interest to examine the reactivity of the kinetically stable HC₂P isomers HCCP¹1, ³1, cCC(H)P¹5 and HPCC¹3 towards oxygen atoms (in singlet or triplet). We performed calculations at the CCSD(T)/6-311G(d)//B3LYP/6-311G(d,p) level for both singlet and triplet PESs of the HC₂P + O reaction system (see Table 4, Figs. 4, 5, 6).¹ The evolvement of the reactions between the three HC₂P isomers and oxygen atoms can be summarized by the following pathways:

¹For the $HC_2P + O$ reaction system, the energies of the HC_2PO isomers, the transition states and fragments at the B3LYP/6-311G(d,p) and single-point CCSD(T)/6-311G(d,p) levels are listed in Table 4. The optimized geometries of the HC_2PO isomers and the transition states at the B3LYP/6-311G(d,p) level are shown in Figs. 4 and 5, respectively. A schematic PES of HC_2PO at the CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) level is plotted in Fig. 6

Fig. 5. Optimized geometries of HC_2PO transition states at the B3LYP/ 6-311G(d,p) level. Bond lengths are in angstroms and angles in degrees. The symbol D (abcd) denotes the diheadral angle between the abc and bcd planes

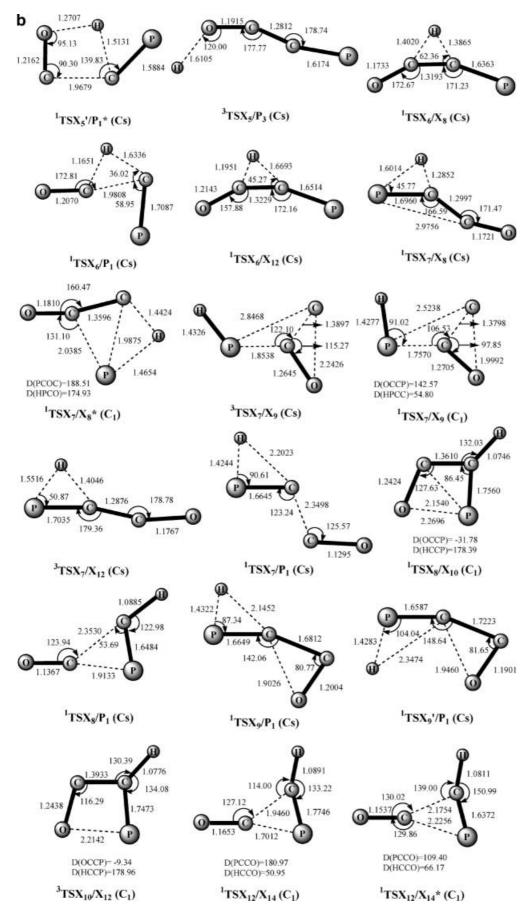


Fig. 5. (Contd.)

- 1. ³HCCP or ¹HCCP + O \rightarrow HCCPO \rightarrow CC(H)PO \rightarrow cCC(H)PO \rightarrow O-cCC(H)P or OCC(H)P \rightarrow HCP + CO (P attack).
- 2. ³HCCP or ¹HCCP + O \rightarrow OCHCP \rightarrow O-cCC(H)P or OCC(H)P \rightarrow HCP + CO (C attack).
- 3. ${}^{1}cCC(H)P + O \rightarrow O-cCC(H)P$ or
- $OCC(H)P \rightarrow HCP + CO (C attack).$
- 4. ¹HPCC + O \rightarrow CCP(H)O \rightarrow HCCPO \rightarrow CC(H)PO \rightarrow cCC(H)PO \rightarrow O-cCC(H)P or OCC(H)P \rightarrow HCP+CO (P attack).
- 5. ¹HPCC + O \rightarrow HPCCO \rightarrow O-cCC(H)P or OCC(H)P \rightarrow HCP+CO (C attack).

С 122.95 1.2175 1.6544 145 .1894 1 1820 1.9847 91.77 124.87 130.79 1.984 100.26 .6357 D(PCOH)=178.73 D(CPCO)=135.14 D(CPCO)=63.37 D(HCPC)=10.81 ³TSX₁₃/X₁₄ (C₁) ³TSX₁₃/X₁₃' (C₁)

Fig. 5. (Contd.)

Note that O-cCC(H)P is in the singlet state and OCC(H)P is in the triplet state. No barriers can be found for the initial attack of these pathways. The primary products formed, HCP + CO, may undergo further dissociation to H + CO + CP except when starting from ³HCCP + ³O. Then, When O atoms are present (either in the singlet or in triplet state), the four inherently kinetically stable species HCCP ¹1, ³1, H-cCPC ¹5 and HPCC ¹3 may rapidly form various HC₂PO intermediate isomers that may eventually dissociate to the simple fragments HCP, CP, CO and H. Formation of the other products is thermodynamically or kinetically much less competitive.

4 Conclusions

B3LYP/6-311G(d,p) and CCSD(T)/6-311G(d,p) (singlepoint) methods were employed to study the PES of HC₂P. The structural and stability properties of HC₂P isomers were compared with those of the well-known HC₂N. In addition to the experimentally known linear isomer HCCP with the $^{3}\Sigma^{-}$ state 3 1, its bent singlet form HCCP 1 1, the singlet three-membered-ring cCC(H)P 1 5 and the singlet HPCC 1 3 are also predicted to have considerable kinetic stability and they may be experimentally observable. However, the HCPC isomers in

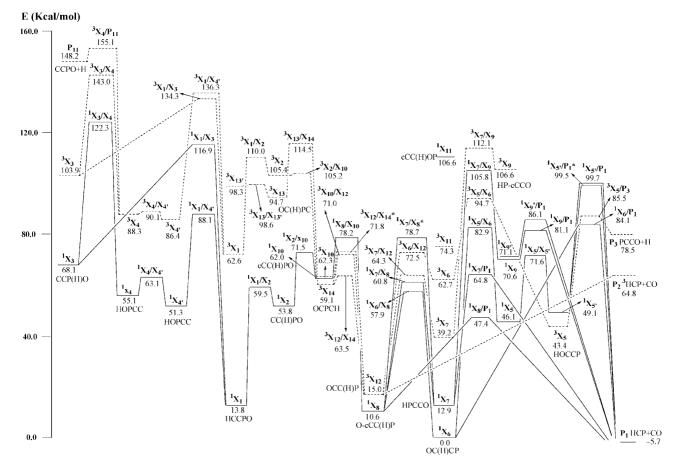


Fig. 6. Schematic potential-energy surface of HC₂PO at the CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) level

both the singlet ¹2 and the triplet ³1 and the triplet HPCC ³3 are energetically high lying and kinetically unstable despite the fact that the analogous triplet HCNC and HNCC are stable and have been identified experimentally. The reactivity of the species ¹1, ³1, ¹5 and ¹3 towards oxygen atoms was briefly discussed. We hope that the present calculations may stimulate future characterization of these stable HC₂P isomers either in the laboratory or in interstellar space.

Acknowledgements. This work was supported by the National Natural Science Foundation of China (no. 29892168, 20073014), Doctor Foundation of Educational Ministry, Foundation for University Key Teacher by the Ministry of Education and Key Term of Science and Technology by the Ministry of Education of China. The authors are greatly thankful for the referee's helpful suggestion on discussing the reactivity of HC_2P isomers towards oxygen atoms.

References

- 1. Ridgeway ST, Wallace L, Smith GR (1976) Astrophys J 207: 1002
- (a) Turner BE, Balley J (1987) Astrophys J 321: L75; (b) Ziurys LM (1987) Astrophys J 321: L81
- 3. Guelin M, Cernicharo J, Pauber G, Turner BE (1990) Astron Astrophys 230: L9
- (a) Thorne LR, Anicich VG, Huntress WT Jr (1983) Chem Phys Lett 98: 162; (b) Thorne LR, Anicich VG, Prasad SS, Huntress WT Jr (1984) Astrophys J 280: 139; (c) Smith D, McIntosh BJ, Adams NG (1989) J Chem Phys 90: 6213
- (a) Maclagan RGAR (1989) Chem Phys Lett 163: 349; (b) Maclagan RGAR (1990) J Phys Chem 94: 3373; (c) Largo A, Flores JR, Barrientos C, Ugalde JM (1991) J Phys Chem 95: 170; (d) Redondo P, Largo A, Barrientos C, Ugalde JM (1991) J Phys Chem 95: 4318; (e) Largo A, Flores JR, Barrientos C,

Ugalde JM (1991) J Phys Chem 95: 6533; (f) Lopez X, Ugalde JM, Barrientos C, Largo A, Redondo P (1993) J Phys Chem 97: 1521; (g) Turner BE, Tsuji T, Balley J, Guelin M, Cernicharo J (1990) Astrophys J 365: 569

- 6. Millar TJ (1991) Astron Astrophys 242: 241
- 7. Ahmad IK, Ozeki H, Saito S (1997) J Chem Phys 107: 1301
- 8. Shao GQ, Fang WH (1998) Chem Phys Lett 290: 193
- (a) Bernheim RA, Kempf RJ, Humer PW, Skell PS (1964) J Chem Phys 41: 1156; (b) Bernheim RA, Kempf RJ, Bramas JV, Skell PS (1965) J Chem Phys 43: 196; (c) Bernheim RA, Kempf RJ, Reichenbecher EF (1970) J Magn Reson 3: 5; (d) Wasserman E, Yager WA, Kuck VJ (1970) Chem Phys Lett 7: 409; (e) Bernheim RA, Bernard HW, Wang PS, Wood LS, Skell PS (1970) J Chem Phys 53: 1280; (f) Dendramis A, Leroi GE (1971) J Chem Phys 66:4334; (g) Saito S, Endo Y, Hirota E (1984) J Chem Phys 80: 1427; (h) Brown FX, Saito S, Yamamoto S (1990) J Mol Spectrosc 143: 4256
- Flammang R, Laurent S, Flammang, Barbieux M, Wentrup C (1993) Org Mass Spectrom 28: 1161
- (a) Endo Y, Ohshima J (1993) Chem Phys 98: 6618; (b) Morter CL, Farhat SK, Curl RF (1993) Chem Phys Lett 207: 153; (c) McCarthy MC, Gottlieb CA, Cooksy AL, Thaddeus P (1995) J Chem Phys 103: 7779; (d) Miller CE, Eckhoff WC, Curl RF (1995) J Mol Struct 352: 435
- 12. Goldberg N, Fiedler A, Schwarz H (1995) J Phys Chem 99: 15327
- (a) Hoffmann R, Zeiss GD, Van Dine GW (1968) J Am Chem Soc 90: 1485; (b) Harrison JR, Dendramis A, Leroi GE (1978) J Am Chem Soc 100: 3452; (c) Zandler ME, Goddard JD, Schaefer HF III (1979) J Am Chem Soc 101: 1072; (d) Kim KS, Schaefer HF III, Radom L, Pople JA, Binkley JS (1983) J Am Chem Soc 105: 4148; (e) Rice JE, Schaefer HF III (1987) J Chem Phys 86: 7051; (f) Malmquist P-A, Lindhm R, Roos BO, Ross S (1988) Theor Chim Acta 73: 155; (g) Seidi ET, Schaefer HF III (1992) J Chem Phys 96: 4449
- Aoki K, Fueno H, Ikuta S, Nomura O (1993) Chem Phys Lett 202: 33
- 15. Winnewisser G (1997) J Mol Struct 408/409
- 16. Kroto HW, Nixon JF, Ohno K (1981) J Mol Spectrosc 90: 367